Azaarene cis-dihydrodiol-derived 2,2'-bipyridine ligands for asymmetric allylic oxidation and cyclopropanation \dagger

Derek R. Boyd,^{*a} Narain D. Sharma,^a Lenuta Sbircea,^a Deirdre Murphy,^a Tayeb Belhocine,^{*a*} John F. Malone,^{*a*} Stuart L. James,^{*a*} Christopher C. R. Allen^b and John T. G. Hamilton bc

Received (in Cambridge, UK) 22nd August 2008, Accepted 29th September 2008 First published as an Advance Article on the web 9th October 2008 DOI: 10.1039/b814678k

Biphenyl dioxygenase-catalysed cis-dihydroxylation of 2-chloroquinoline, 2-chloro-3-methylquinoline and 2-chloro-6-phenylpyridine substrates yielded the corresponding enantiopure cis-dihydrodiols; enantiopure 2,2'-bipyridines, synthesised in four steps from 2-chloroquinoline, proved to be efficient chiral ligands in catalytic asymmetric allylic oxidation and cyclopropanation reactions of alkenes.

The dioxygenase-catalysed dihydroxylation of carbocyclic arenes, to yield the corresponding enantiopure cis-dihydrodiol metabolites, has provided a new pool of chiral compounds for use in chemoenzymatic synthesis. Recent reviews^{1a–d} list many examples of their applications in the synthesis of natural products, e.g. alkaloids and sugars, and non-natural products, e.g. carbasugars and isomeric dihydrodiols. The corresponding cis-dihydrodiol metabolites, derived from bicyclic azaarenes, *e.g.* $1\text{A} \rightarrow (7S, 8R)$ -1B and $(5R, 6S)$ -1C,^{2*a,b*} and, more recently, monocyclic azaarenes, e.g. $4A \rightarrow (1S, 2R)$ -4B, are also now available.^{3,4} It is noteworthy that both toluene dioxygenase (TDO) and biphenyl dioxygenase (BPDO) enzymes strongly favour catalytic cis-dihydroxylation of the carbocyclic rings rather than the pyridine rings in azaarenes 1A and 4A. Although an increasing range of cis-dihydrodiol metabolites derived from mono- 3,4 di- 2a,b tri-^{4–6} and tetracyclic⁷ azaarenes have been reported, up to the present, few have been used as synthetic precursors.⁴

Using whole cells of the bacterium Pseudomonas putida UV4 (expressing TDO), the enantiopure $(>98\%$ ee) cis-dihydrodiols $(7S, 8R)$ -2B (major) and $(5R, 6S)$ -2C (minor) were previously isolated as the main metabolites of 2-chloroquinoline **2A** (Scheme 1).^{2b} cis-Dihydrodiol (7S,8R)-**2B** (>98% ee), also obtained using Sphingomonas yanoikuyae B8/36 (expressing $BPOO$,^{2b} was of particular interest, since the chlorine atom at C-2 could, in principle, provide entry into a new range of chiral 2,2'-bipyridines via an established homocoupling procedure.⁸ The major objectives of the current study were: (i) the biocatalytic synthesis and stereochemical assignment of the new cis-dihydrodiols 3B and 5B, derived from the corresponding azaarenes 2-chloro-3-methylquinoline (3A) and 2-chloro-6-phenylpyridine (5A) (ii) the utilization of azaarene cis-diols 2B, 3B and 5B in the chemical synthesis of enantiopure 2,2'-bipyridine ligands 2F, 3F, 5F-8F and (iii) evaluation of the potential of the chiral 2,2'-bipyridines $2F$, $6F-8F$ as ligands for catalytic asymmetric allylic hydroxylation and cyclopropanation reactions (Scheme 2).

While the TDO-catalysed biotransformation of azaarene 2A yielded mainly metabolite $(7S, 8R)$ -2B, the bulkier substrates 3A and 5A unfortunately proved unacceptable to this enzyme. When the alternative enzyme, BPDO, present in S. yanoikuyae B8/36 and having a larger active site, was used with substrate 3A, a PLC separable $(5\% \text{ MeOH}-CHCl₃)$ mixture of cisdihydrodiols **3B** (35%) and **3C** (25%) metabolites was obtained; under similar conditions cis-dihydrodiol 5B was the sole metabolite of azaarene 5A, albeit in lower yield (14%). The absolute configurations of the new bioproducts $(7S, 8R)$ -3B and $(1S, 2R)$ -5B were firmly established by circular dichroism spectroscopy (CD). Enantiopurity values in each case were determined to be $>98\%$ ee by formation of the corresponding $(-)$ - (S) - and $(+)$ - (R) -2- $(1$ -methoxyethyl)benzeneboronic acid (MEBBA) derivatives followed by ¹H-NMR analysis, using methods similar to those recently reported for other cis-dihydrodiols. $9a-d$

The metabolites 2B, 3B and 5B were partially hydrogenated to give the corresponding cis-tetrahydrodiols 2D, 3D and 5D $(>95\%$ yield) under conditions that avoided hydrogenolysis of the chlorine atoms ($PtO₂/H₂$, EtOAc, Scheme 2). *cis*-Tetrahydrodiols 2D, 3D and 5D were protected as the

Scheme 1 Enzyme-catalysed synthesis of azaarene cis-dihydrodiols 1B–5B and 1C–3C.

 a^a Centre for the Theory and Application of Catalysis (CenTACat), School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK BT9 5AG. E-mail: dr.boyd@qub.ac.uk; Fax: $+44$ (0)28 90972117; Tel: $+44$ (0)28 90975419

^b School of Biological Sciences, Queen's University Belfast, Belfast, UK BT9 5AG

 ϵ Agri-food and Biosciences Institute for Northern Ireland, Belfast, UK BT9 5PX

[†] Electronic supplementary information (ESI) available: Experimental details. CCDC 698751. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b814678k

Scheme 2 Synthesis of 2,2'-bipyridines 2F, 3F and 5F-8F.

corresponding acetal derivatives 2E, 3E, 5E–8E (60–96% yield). Compound 8E, the major (90%) of two diastereoisomers formed, was purified by chromatography. It was found to have the bulky R' group (*t*-Bu) in a syn relationship with the proximate carbocyclic ring based on strong NOE interactions between: (i) the Me group and the H-7, H-8 atoms, (ii) the t -Bu group and the H-3, H-4 atoms.

The stoichiometric, nickel(0)-mediated homocoupling of acetals 2E, 3E and 5E–8E yielded the corresponding enantiopure substituted 2,2'-bipyridines $2F$, $3F$ and $5F-8F$ (34-96%) yield). X-ray crystallographic analysis of bipyridine 2F, derived from the cis-dihydrodiol (7S,8R)-2B, confirmed both its structure and transoid-conformation in the solid state, with respect to the pyridine nitrogen atoms (Fig. 1). \dagger

A large scale TDO-catalysed biotransformation of the commercially available 2-chloroquinoline produced a sufficient quantity of cis-dihydrodiol 2B (30% yield) for the synthesis of a range of 2,2'-bipyridines, e.g. $2F$, $6F$, $7F$, and 8F, and an evaluation of their potential as chiral ligands. The Kharasch–Sosnosky allylic hydroxylation reaction 11 of cyclohexene 9 and cycloheptene 11 was used to test ligands $2F$, 6F, 7F and 8F (Scheme 3); a summary of the results obtained is shown in Table 1. The ability of ligand 2F to complex with $Cu(I)$ was confirmed by reacting it with $Cu(MeCN)₄ClO₄$ in MeOH solvent. The red complex 2G was fully characterised by

Fig. 1 X-ray crystal structure of 2,2'-bipyridine $2F$.¹⁰

Scheme 3 Asymmetric allylic oxidation of alkenes 9 and 11.

Table 1 Isolated yields and % ee values of products 10 and 12 obtained by asymmetric allylic oxidation of alkenes 9 and 11

Ligand	Alkene	Product		
			Yield $(\%)$	%ee
2F	9	10	89	73
	11	12	50	85
6F	9	10	92	82
	11	12	43	91
7F	9	10	55	85
	11	12	72	92
8F	9	10	91	90
	11	12	89	97

elemental microanalysis, NMR and mass spectrometry and was found to have two molecules of ligand 2F complexed as a Cu(I) perchlorate. The data obtained are consistent with the chelated nitrogen atoms of ligand 2F adopting a cisoid conformation coordinated in a distorted tetrahedron around the copper(I) ion.

The Cu(I) catalyst required in allylic hydroxylation reactions was generated in situ by reduction of the complex of Cu(II) triflate with bipyridine ligands $2F$, $6F-8F$ (6 mol%) using phenylhydrazine in acetone solvent. 11

The benzoate products 10 and 12 were obtained with a strong preference $(73-97\%$ ee) for the (S) configuration (Table 1). The optimal ee values in both the cyclohexene benzoate 10 (90%) and cycloheptene benzoates 12 (97%) were obtained using $2,2'$ -bipyridine ligand $8F$, where the bulky tertbutyl group appeared to have a strong directing effect. These results are comparable to the best achieved using various pyridine bis(diphenyloxazoline) ligands (up to 98% ee)^{12a,b} and better than those obtained using other chiral $2,2'$ bipyridine ligands (up to 91%).^{12c-e}

The potential of $2,2'$ -bipyridines 6F and 8F as chiral ligands (1.5 mol%) during the asymmetric cyclopropanation of styrene substrates 13 and 14 was evaluated using $Cu(OTf)_2$, phenylhydrazine and tert-butyl diazoacetate (Scheme 4). The major trans substituted cyclopropanes 15 and 16 (90–97%) were readily separated from cis isomers 17 and 18 by PLC, with combined yields of ca. $50-70\%$ (Table 2). The Cu(I) complexes of ligands 6F and 8F catalysed asymmetric

Scheme 4 Asymmetric cyclopropanation of alkenes 13 and 14.

Table 2 Relative yields and ee values of products 15 and 16 from asymmetric cyclopropanation of alkenes 13 and 14

Ligand	Alkene	Product		
			Yield $(\%)$	%ee
6F	13	15	91 ^a	88
6F	14	16	90 ^b	91
8F	13	15	$\frac{95^a}{97^b}$	92
8F	14	16		95

cyclopropanation of alkenes 13 and 14, to give products 15 and 16 with high de $(80-94\%)$ and ee $(88-95\%)$ values. These results are comparable to the best reported using other types of chiral 2,2'-bipyridines obtained by alternative synthetic methods.¹³

The results in Tables 1 and 2 show that the new chiral $2,2'$ bipyridines 2F, 6F, 7F and 8F obtained by the chemoenzymatic route are particularly useful in $Cu(I)$ -catalysed reactions of alkenes to yield benzoate esters of chiral allylic alcohols and cyclopropanes with ee values up to 95–97%. This new route to chiral ligands has the additional advantage of synthetic versatility. Thus, for example, the addition of further chiral centres is possible via epoxidation or cis-dihydroxylation of the remaining alkene bonds in cis-dihydrodiols 2B, 3B, 5B and bipyridine 5F.

The potential of the $2,2'$ -bipyridines $3F$ and $5F$, obtained using the same chemoenzymatic method, and the corresponding mono- and di-N-oxide derivatives of $2,2'$ -bipyridines $2F$, 3F, 5F–8F as chiral ligands for these and other types of catalytic asymmetric synthesis is currently under investigation.

In conclusion, this preliminary study has demonstrated that enantiopure cis-dihydrodiol bioproducts derived from azaarene substrates containing several functionalities can be converted in three steps to a new range of $2,2'$ -bipyridines. Several new 2,2'-bipyridines have already proved to be useful ligands for asymmetric allylic oxidation and cyclopropanation of alkenes. The synthetic versatility of these and other cisdihydrodiol metabolites from mono- and polycyclic azaarenes should generate many new 2,2'-bipyridine ligands with applications to a much wider range of catalytic asymmetric synthesis reactions.

4-Chloroquinoline has similarly been found to yield a useful cis-dihydrodiol metabolite. This has in turn been used as an enantiopure building block in the production of chiral metal– organic frameworks (MOFs).¹⁴

We thank CenTACat (to LS), ESF (to TB), DEL/CAST (to DM), and Science Foundation Ireland (Grant No. 04/IN3/ B581, to NDS) for funding and Dr John Blacker for his help and advice during the initial phase of the programme.

Notes and references

1 (a) D. R. Boyd and G. N. Sheldrake, Nat. Prod. Rep., 1998, 15, 309; (b) T. Hudlicky, D. Gonzalez and D. T. Gibson, Aldrichimica Acta, 1999, 32, 35; (c) R. A. Johnson, Org. React. (N. Y.), 2004, 63, 117; (d) D. R. Boyd and T. Bugg, Org. Biomol. Chem., 2006, 4, 181.

- 2 (a) D. R. Boyd, N. D. Sharma, M. R. J. Dorrity, M. V. Hand, R. A. S. McMordie, J. F. Malone, H. P. Porter, J. Chima, H. Dalton and G. N. Sheldrake, J. Chem. Soc., Perkin Trans. 1, 1993, 1065; (b) D. R. Boyd, N. D. Sharma, L. V. Modyanova, J. G. Carroll, J. F. Malone, C. C. R. Allen, J. T. G. Hamilton, D. T. Gibson, R. E. Parales and H. Dalton, Can. J. Chem., 2002, 80, 589.
- 3 N. Misawa, K. Shindo, H. Takahashi, H. Suenaga, K. Iguchi, H. Okazaki, S. Harayama and K. Furukawa, Tetrahedron, 2002, 58, 9605.
- 4 D. R. Boyd, N. D. Sharma, G. P. Coen, F. Hempenstall, V. Ljubez, J. F. Malone, C. C. R. Allen and J. T. G. Hamilton, Org. Biomol. Chem., 2008, DOI: 10.1039/b810235j.
- 5 D. R. Boyd, N. D. Sharma, J. G. Carroll, C. C. R. Allen, D. A. Clarke and D. T. Gibson, Chem. Commun., 1999, 1201.
- 6 K. Shindo, Y. Ohnishi, H.-K. Chun, H. Takahashi, M. Hayashi, A. Saito, K. Iguchi, K. Furukawa, S. Harayama, S. Horinouchi and N. Misawa, Biosci., Biotechnol., Biochem., 2001, 65, 2472.
- 7 D. R. Boyd, N. D. Sharma, F. Hempenstall, M. A. Kennedy, J. F. Malone, S. M. Resnick and D. T. Gibson, J. Org. Chem., 1999, 64, 4005.
- 8 A. V. Malkov, M. Bella, V. Langer and P. Kočovský, Org. Lett., 2000, 2, 3047.
- 9 (a) D. R. Boyd, A. Drake, J. Gawronski, M. Kwit, J. F. Malone and N. D. Sharma, J. Am. Chem. Soc., 2005, 127, 4308; (b) D. R. Boyd, N. D. Sharma, G. N. Coen, P. Gray, J. F. Malone and J. Gawronski, Chem.–Eur. J., 2007, 13, 5804–5811; (c) M. Kwit, N. D. Sharma, D. R. Boyd and J. Gawronski, Chem.–Eur. J., 2007, 13, 5812–5821; (d) M. Kwit, N. D. Sharma, D. R. Boyd and J. Gawronski, Chirality, 2008, 20, 609–620.
- 10 Crystal data for 2F: $C_{24}H_{28}N_2O_4$, $M = 408.5$, monoclinic, $a =$ 10.103(4), $b = 7.746(2)$, $c = 13.929(4)$ Å, $\beta = 93.59(2)^\circ$, $U = 1088.0(6)$ Å³, space group $P2_1$ (no. 4), $Z = 2$, $T = 293(2)$ K, Mo-K α radiation, $\lambda = 0.71073$ Å, $F(000) = 436$, $D_x =$ 1.247 g cm⁻³, $\mu = 0.085$ mm⁻¹, Bruker P4 diffractometer, ω scans, 4.0° < 2 θ < 60.0°, measured/independent reflections: 4399/3383, R_{int} = 0.031, direct methods solution, full-matrix least squares refinement on F_0^2 , anisotropic displacement parameters for nonhydrogen atoms; all hydrogen atoms located in a difference Fourier synthesis but included at positions calculated from the geometry of the molecule using the riding model, with isotropic vibration parameters. $R_1 = 0.058$ for 2058 data with $I > 2\sigma(I)$, 276 parameters, $\omega_{\rm R_2}$ = 0.168 (all data), GoF = 1.02, $\Delta\rho_{\rm min,max}$ = $-0.20/0.30$ e \AA^{-3} . CCDC reference number 698751. The molecule has a transoid-conformation with respect to the pyridine rings. The N–C–C–N torsion angle is -176.5° . Data can be obtained from ESI or free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 11 For reviews in this area, see: (a) J. Eames and M. Watkinson, Angew. Chem., Int. Ed., 2001, 40, 3567; (b) M. B. Andrus and J. C. Lashley, Tetrahedron, 2002, 58, 845; (c) J. Bayardon, D. Sinou, M. Guala and G. Desimoni, Tetrahedron: Asymmetry, 2004, 15, 3195; (d) J. S. Clark, M. R. Clark, J. Clough, A. J. Blake and C. Wilson, Tetrahedron Lett., 2004, 45, 9447.
- 12 (a) M. B. Andrus and Z. Zhou, J. Am. Chem. Soc., 2002, 124, 8806; (b) S. K. Ginotra and V. K. Singh, Org. Biomol. Chem., 2006, 4, 4370; (c) A. V. Malkov, I. R. Baxendale, M. Bella, V. Langer, J. Fawcett, D. R. Russell, D. J. Mansfield, M. Valko and P. Kocovsky, Organometallics, 2001, 11, 3427; (d) A. V. Malkov, D. Pernazza, M. Bell, M. Bella, A. Massa, F. Teplý, P. Meghani and P. Kočovský, J. Org. Chem., 2003, 68, 4727; (e) M. P. A. Lyle and P. Wilson, Org. Biomol. Chem., 2006, 4, 41.
- 13 (a) K. Ito, S. Tabuchi and T. Katsuki, Synlett, 1992, 575; (b) K. Ito and T. Katsuki, Tetrahedron Lett., 1993, 34, 2661; (c) M. P. A. Lyle and P. D. Wilson, Org. Lett., 2004, 6, 855; (d) M. P. A. Lyle, N. D. Draper and P. Wilson, Org. Biomol. Chem., 2006, 4, 877.
- 14 L. Sbircea, N. D. Sharma, W. Clegg, R. W. Harrington, P. N. Horton, M. B. Hursthouse, D. C. Apperley, D. R. Boyd and S. L. James, Chem. Commun., 2008, DOI: 10.1039/b812366g.